A Curve Evolution Approach to Smoothing and Segmentation Using the Mumford-Shah Functional
نویسندگان
چکیده
In this work, we approach the classic Mumford-Shah problem from a curve evolution perspective. In particular, we let a given family of curves define the boundaries between regions in an image within which the data are modeled by piecewise smooth functions plus noise as in the standard Mumford-Shah functional. The gradient descent equation of this functional is then used to evolve the curve. Each gradient descent step involves solving a corresponding optimal estimation problem which connects the Mumford-Shah functional and our curve evolution implementation with the theory of boundary-value stochastic processes. The resulting active contour model, therefore, inherits the attractive ability of the Mumford-Shah technique to generate, in a coupled manner, both a smooth reconstruction of the image and a segmentation as well. We demonstrate applications of our method to problems in which data quality is spatially varying and to problems in which sets of pixel measurements are missing. Finally, we demonstrate a hierarchical implementation of our model which leads to a fast and efficient algorithm capable of dealing with important image features such as triple points.
منابع مشابه
Curve Evolution, Boundary-Value Stochastic Processes, the Mumford-Shah Problem, and Missing Data Applications
We present an estimation-theoretic approach to curve evolution for the Mumford-Shah problem. By viewing an active contour as the set of discontinuities in the Mumford-Shah problem, we may use the corresponding functional to determine gradient descent evolution equations to deform the active contour. In each gradient descent step, we solve a corresponding optimal estimation problem, connecting t...
متن کاملCurve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification
In this work, we first address the problem of simultaneous image segmentation and smoothing by approaching the Mumford-Shah paradigm from a curve evolution perspective. In particular, we let a set of deformable contours define the boundaries between regions in an image where we model the data via piecewise smooth functions and employ a gradient flow to evolve these contours. Each gradient step ...
متن کاملContour evolution scheme for variational image segmentation and smoothing
An algorithm, based on the Mumford–Shah (M–S) functional, for image contour segmentation and object smoothing in the presence of noise is proposed. However, in the proposed algorithm, contour length minimisation is not required and it is demonstrated that the M–S functional without contour length minimisation becomes an edge detector. Optimisation of this nonlinear functional is based on the me...
متن کاملA curve evolution-based variational approach to simultaneous image restoration and segmentation
In this paper, we introduce a novel approach for simultaneous restoration and segmentation of blurred, noisy images by approaching a variant of the Mumford-Shah functional from a curve evolution perspective. In particular, by viewing the active contour as the set of discontinuities in the image, we derive a gradient flow to minimize an extended Mumford-Shah functional where the known blurring f...
متن کاملMultiscale Image Segmentation Using Active Contours
We propose a new approach for image segmentation at different scales of observation, based on a multiscale image decomposition and on the active contour segmentation model. The proposed method consists of two steps. Firstly, a representation of a given image at multiple scales is derived, by means of a smoothing method which minimizes the weighted total variation norm of the image. This method ...
متن کامل